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ABSTRACT

OH 4 — » 3)
85% over 2 steps . . CHO
23% from ”\/\OH , dr 250/1 siphonarienal (dr 250/1)
79% * 66% over 4 steps
2 steps

)
o BH ©
siphonarienone (dr 250/1) siphonarienolone {(dr > 50/1}

1)

Siphonarienolone (1) has been synthesized from siphonarienal (3) in 66% over four steps. Synthesis of 3, in turn, has been achieved in two
steps (85% combined yield) from 4, prepared from 3-buten-1-ol in seven steps (23% combined yield). Also, a two-step conversion of 3 into
siphonarienone (2) is reported.

Siphonarienolone (1) is a member of the siphonarienes, aenvisioned that siphonarien&)(vould serve as aconvenient
class of polypropionates produced by mollusks of the genusintermediate for the synthesis &fand2 (Scheme 1).
Siphonaria. It was isolated and tentatively identified in 1988  All previous syntheses df—3 and other related siphonar-

by Norte et al- Its first total synthesis, however, was achieved ieneg*°6 have employed (2S,4S,6S)-2,4,6-trimethyl-1-

only in 20022 and this work also revised its stereochemistry nonanol (4) and/or the corresponding aldehyflpds key

at C4. In view of an efficient and general method for the intermediates. Their syntheses, in turn, have been most

synthesis of reduced polypropionates via Zr-catalyzed asym-frequently achieved via asymmetric-€ bond formation
metric carboalumination developed recently by? iits, ap- in the a. position of chiral carboxamides, exemplified by

plication to the synthesis of siphonarienolotgdnd a couple  those of Evang,and of related nucleophiles such as chiral
of other structurally related siphonarienes, i.e., siphonar- imines® Some notable examples of the use of this method

ienone (2j and siphonarienal (3)was undertaken. It was include the synthesis of siphonarienone (2) \Baby
Masamun& and that of pectinatone vi& by Enders
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reagents. Thus, the synthesisdoand/or5 containing three
asymmetric carbon centers typically requires approximately kj\/?\/ 3 Peaat yiation
10 steps from readily available compounds. Another aspect OH @) A B e
common to these procedures is the need for reduction of 85% (crude), dr=6.7/1 '5;3(+)S(NMT§1L;:&2 (0:3 equ)
carboxylic acid derivatives to aldehyde or alcohols in each ~ 79% recovery, dr= 4071 and then O
three-step cycle. A recently reported ingenious mef#éd,

o

which is catalytic in chiral auxiliary for €C bond formation, oH SWerm Oxid.
involved asymmetric cyclic dimerization of methylketene and @ &
ring opening with racemic 2-methylpentanal to construct the 58% (crude), dr = 8/1

. . . 80% recovery, dr > 50/1
entire carbon framework @ with the desired stereochem- . y.ar=

istry in one step in 35% yield. Subsequent functional EtsSiJ\,N_O

modification over five steps in 42% combined yield led to SBulLi, THF

the synthesis of5 in 15% overall yield in six steps. 78 ©0-20°C, 1h

Conversion ob into siphonarienal (3) was then achieved in and then CF4CO-M. 0 g cho @
three additional steps in 69% combined yield. Thaisyas 85% over 2 steps
synthesized in 10% overall yield in nine steps. 298% isomeric purity

The Zr-catalyzed asymmetric carboalumination method we - 1-Neomenthylindenyl
have recently develop&chas provided (2S,4S,6S)-2,4,6- IBAO = Isobutylaluminoxane
trimethyl-1-nonanol (4) o&50/1 dr ¢3C NMR and>99% MAO = Methylaluminoxane
ee by Mosher analysis) in 23% overall yield over seven (or
six isolation) steps from 3-buten-1-ol, as shown in Scheme
223 This novel protocol that is totally discrete from any other for 1 h°The reaction mixture was quenched with;COOH
methods features the following. (1)$83-Methyl-1-hexanol ~ at 0°C in THF to give siphonarienaBj in 85% yield over
(6) of 90% ee was prepared from 3-buten-1-ol in one &tep. two steps (Scheme 2), dr 50/1. Thus, the overall yield of
(2) The alcohol thus obtained was used without enantiomeric 3 based on 3-buten-1-ol over nine (or seven isolation) steps

separation to prepare (2%-2,4-dimethyl-1-heptanol {f is 20%. Its spectral data are in good agreement with those
6.7/1 dr, which, after column chromatography (1/50 EtOAc/ 'eported previously.
hexanes), provided pui®(dr >40/1 by*3C NMR and>98% Conversion of siphonarienas)into siphonarienolonelj

ee by Mosher analysis) in 50% yield from 3-buten-1-ol over Was achieved in four steps, as summarized in Schemé&g. (2
four (or three isolation) steps(3) A three-step protocol — 2-Benzoyloxy-3-pentanoriéprepared from ethyl§)-lactate,
consisting of iodination, Pd-catalyzed vinylation, and Zr- Wwas treated witlB-chlorodicyclohexylborane and IMeEt
catalyzed asymmetric carboaluminatiesxidation furnished, ~ in ether ¢-78to 0°C, 2 h). The reaction @ with the above-
after column chromatography, pusé of >50/1 dr in 46% generated enolborane was carried out@8 °C for 1 h and
combined yield over three steps (or 23% combined yield over then at—=20°C (freezer) for 10 h. The resultant mixture was
seven (or six isolation) steps from 3-buten-1-ol). treated at 0C with MeOH, a buffer (pH 7) solution of NaH
Oxidation of 4 with (COCI), (1.2 equiv), DMSO (2.4  POsand NaHPQ, and 30% HO; to oxidize any organobo-
equiv), and BN (3 equivp produced the corresponding 'an€s: After the standgrd workup and colum'n chrpmatogra-
aldehyde5. Without isolatior-purification, it was treated ~ PNY (5 0 8% EtOAc in hexanes§ was obtained in 82%
with 1.3 equiv of E4SICH(Me)CH=NCy, where Cy is yield. Protection of the OH group & with TBSOTf and

cyclohexyl, andfBuLi (1.2 equiv) in THF at—78 to 20°C 2,6-lutidine ir? 99% yield was follpwed by rgmoyal of the
BzO group with Smy*? and MeOH in THF to gived in 94%

yield. Attempted removal of the TBS group with TBAF in
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66% over 4 steps, dr 250/1 trimethyl-2-octenal 10), which has been employed as a key
intermediate in a recent synthesis of (3S,4S,5E,7S,9R)-
3,5,7,9-tetramethyl-1,5-undecadien-4-dl1] (Scheme 4),
further demonstrates the high efficiency and general ap-
plicability of the Zr-catalyzed asymmetric carboalumination-
based method for the synthesis of reduced polypropionates
and complex natural products containing such fragments. In
the above-mentioned synthesis of){sambutoxirtc for
example,10 was prepared in 11 or 12 steps by using two
chiral reagents, i.e., methyl R3-3-hydroxy-2-methylpropi-
onate and a chiraH)-crotonamide, in stoichiometric quanti-
ties. Thus, its synthesis from 3-buten-1-ol in six (or four
isolation) steps without using any chiral materials in sto-
ichiometric quantities or any enantiomeric separation amounts
to a substantial simplification, and similar simplifications
appear to be feasible also in many other cases.

THF at 23°C was unsuccessful. On the other hand, treatment
of 9 with HF-pyridiné?® in THF at 23°C in a Teflon tube
afforded, after column chromatography (8 to 20% EtOAc
in hexanes), an 87% yield of the desired siphonarienolone
(1): =50/1 dr; [o}p = + 11° (c 0.3, CHC}), lit.* [a]p =
+19.6° (c 0.9, CHC}). The yield of1 (=50/1 dr) from3

was 66% over four steps. SinBewas synthesized in 20%
yield over nine (or seven isolation) steps (vide supra), the
overall yield of1 from 3-buten-1-ol is 13% over 13 (or 11
isolation) steps. The previously reported conversios ioto

1? was achieved in four steps in 40% combined yield via a
totally different route, the overall yield df from racemic
2-methylpentanal being 6% in 10 steps.

Conversion of siphonarienaB) into siphonarienone2j
was simply achieved by the reaction ®fwith EtMgBr in
88% vyield, followed by oxidation with Dess—Martin perio-
dinane in 90% yield (isomeric purity 99%). Its spectral
data are in good agreement with those reported2for

3-Buten-1-ol has also been converted t&R#R)- and
(2S,4R)-2,4-dimethyl-1-hexanol in 49 and 40% vyields, re-
spectively, by the four-step procedure shown in Scherhe 2.
Conversion of (34R-1-hexanol into (E,4S6R)-2,4,6-
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